Course 311: Academic Year 2001-02

1. Let x be an integer, and let p be a prime number. Suppose that $x^3 \equiv 1 \pmod{p}$. Prove that either $x \equiv 1 \pmod{p}$ or else $x^2 + x \equiv -1 \pmod{p}$.

2. Let x be a rational number. Suppose that x^n is an integer for some positive integer n. Explain why x must itself be an integer.

3. Find a function $f: \mathbb{Z}^3 \rightarrow \mathbb{Z}$ with the property that $f(x, y, z) \equiv x \pmod{3}$, $f(x, y, z) \equiv y \pmod{5}$ and $f(x, y, z) \equiv z \pmod{7}$ for all integers x, y, z.

4. Is 273 a quadratic residue or quadratic non-residue of 137?

5. Let p be a prime number. Prove that there exist integers x and y coprime to p satisfying $x^2 + y^2 \equiv 0 \pmod{p}$ if and only if $p \equiv 1 \pmod{4}$.

6. Let p be an odd prime number, and let g be a primitive root of p.

 (a) Let h be an integer satisfying $h \equiv g \pmod{p}$. Explain why the order of the congruence class of h modulo p^2 is either $p - 1$ or $p(p-1)$. Hence or otherwise prove that h is a primitive root of p^2 if and only if $h^{p-1} \not\equiv 1 \pmod{p^2}$.

 (b) Use the result of (a) to prove that there exists a primitive root of p^2. (This primitive root will be of the form $g + kp$ for some integer k.)

 (c) Let x be an integer, and let m be a positive integer. Use the binomial theorem to prove that if $x \equiv 1 \pmod{p^m}$ and $x \not\equiv 1 \pmod{p^{m+1}}$ then $x^p \equiv 1 \pmod{p^{m+1}}$ and $x \not\equiv 1 \pmod{p^{m+2}}$.

 (d) Use the results of previous parts of this question to show that any primitive root of p^2 is a primitive root of p^m for all $m \geq 2$. What does this tell you about the group of congruence classes modulo p^m of integers coprime to p?

 (e) Do the above results hold when $p = 2$ (i.e., when the prime number p is no longer required to be odd)?

7. Let G be a group. An automorphism of G is an isomorphism sending G onto itself. Show that the set $\text{Aut}(G)$ of automorphisms of G is a group with respect to the operation of composition of automorphisms.
8. Let G be a group. The *centre* $Z(G)$ of G is defined by

$$Z(G) = \{ z \in G : gz = zg \text{ for all } g \in G \}.$$

Prove that the centre $Z(G)$ of a group G is a normal subgroup of G. [In particular, you should show that $Z(G)$ is a subgroup of G.]

9. Let H be a subgroup of a group G. The *normalizer* $N(H)$ of H in G is defined by $N(H) = \{ g \in G : gHg^{-1} = H \}$. Verify that $N(H)$ is a subgroup of G and H is a normal subgroup of $N(H)$.

10. (a) Show that the elements of the alternating group A_5 fall into five conjugacy classes, and calculate the number of elements in each conjugacy class. Verify that the sum of the numbers obtained equals the order of A_5.

(b) Any normal subgroup of A_5 is a union of conjugacy classes. Show how information on the sizes of the conjugacy classes of A_5 can be combined with Lagrange’s Theorem to show that the group A_5 is simple.

11. (a) Show that the alternating group A_5 has 10 subgroups of order 3. Show also that any two of these subgroups are conjugate.

(b) Show that the alternating group A_5 has 5 subgroups of order 4. Show also that any two of these subgroups are conjugate.

(c) Show that the alternating group A_5 has 6 subgroups of order 5. Show also that any two of these subgroups are conjugate.

12. Use Eisenstein’s criterion to verify that the following polynomials are irreducible over \mathbb{Q}:—

 (i) $t^2 - 2$;
 (ii) $t^3 + 9t + 3$;
 (iii) $t^5 + 26t + 52$.

13. Let p be a prime number. Use the fact that the binomial coefficient $\binom{p}{k}$ is divisible by p for all integers k satisfying $0 < k < p$ to show that if $tf(t) = (t + 1)^p - 1$ then the polynomial f is irreducible over \mathbb{Q}.

The *cyclotomic polynomial* $\Phi_p(t)$ is defined by $\Phi_p(t) = 1 + t + t^2 + \cdots + t^{p-1}$ for each prime number p. Show that $t\Phi_p(t + 1) = (t + 1)^p - 1$, and hence show that the cyclotomic polynomial Φ_p is irreducible over \mathbb{Q} for all prime numbers p.

2
14. The Fundamental Theorem of Algebra ensures that every non-constant polynomial with complex coefficients factors as a product of polynomials of degree one. Use this result to show that a non-constant polynomial with real coefficients is irreducible over the field \(\mathbb{R} \) of real numbers if and only if it is either a polynomial of the form \(at + b \) with \(a \neq 0 \) or a quadratic polynomial of the form \(at^2 + bt + c \) with \(a \neq 0 \) and \(b^2 < 4ac \).

15. Let \(f_1, f_2, \ldots, f_k \) be non-constant polynomials with coefficients in a field \(K \), and let \(g = f_1 f_2 \cdots f_k + 1 \). Show that \(g \) is not divisible by \(f_1, f_2, \ldots, f_k \). Use this result to show that there are infinitely many irreducible polynomials with coefficients in a field \(K \).

16. A complex number \(z \) is said to be algebraic if there \(f(z) = 0 \) for some non-zero polynomial \(f \) with rational coefficients. Show that \(z \in \mathbb{C} \) is algebraic if and only if \(\mathbb{Q}(z) : \mathbb{Q} \) is a finite extension. Then use the Tower Law to prove that the set of all algebraic numbers is a subfield of \(\mathbb{C} \).

17. Let \(K, L \) and \(M \) be fields satisfying \(K \subset L \subset M \). Suppose that the field extensions \(M : L \) and \(L : K \) are algebraic (but not necessarily finite). Prove that the extension \(M : K \) is algebraic.

18. Let \(L \) be a splitting field for a polynomial of degree \(n \) with coefficients in \(K \). Prove that \([L : K] \leq n! \).

19. (a) Show that \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3}) \) and \([\mathbb{Q}(\sqrt{2}, \sqrt{3}), \mathbb{Q}] = 4 \). What is the degree of the minimum polynomial of \(\sqrt{2} + \sqrt{3} \) over \(\mathbb{Q} \)?

(b) Show that \(\sqrt{2} + \sqrt{3} \) is a root of the polynomial \(t^4 - 10t^2 + 1 \), and thus show that this polynomial is an irreducible polynomial whose splitting field over \(\mathbb{Q} \) is \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \).

(c) Find all \(\mathbb{Q} \)-automorphisms of \(\mathbb{Q}(\sqrt{2}, \sqrt{3}) \), and show that they constitute a group of order 4 isomorphic to a direct product of two cyclic groups of order 2.

20. Let \(K \) be a field of characteristic \(p \), where \(p \) is prime.

(a) Show that \(f \in K[t] \) satisfies \(Df = 0 \) if and only if \(f(t) = g(t^p) \) for some \(g \in K[t] \).

(b) Let \(h(t) = a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n \), where \(a_0, a_1, \ldots, a_n \in K \). Show that \((h(t))^p = g(t^p) \), where \(g(t) = a_0^p + a_1^p t + a_2^p t^2 + \cdots + a_n^p t^n \).
Now suppose that Frobenius monomorphism of K is an automorphism of K. Show that $f \in K[t]$ satisfies $Df = 0$ if and only if $f(t) = (h(t))^p$ for some $h \in K[t]$. Hence show that $Df \neq 0$ for any irreducible polynomial f in $K[t]$.

(d) Use these results to show that every algebraic extension $L: K$ of a finite field K is separable.

21. A field K is said to be algebraically closed if every non-constant polynomial with coefficients in K splits over K. Use the fact that the number of irreducible polynomials with coefficients in a given field K is infinite to prove that any algebraically closed field must be infinite.

22. For each positive integer n, let ω_n be the primitive nth root of unity in \mathbb{C} given by $\omega_n = \exp(2\pi i/n)$, where $i = \sqrt{-1}$.

(a) Show that the field extensions $\mathbb{Q}(\omega_n): \mathbb{Q}$ and $\mathbb{Q}(\omega_n, i): \mathbb{Q}$ are normal field extensions for all positive integers n.

(b) Show that the minimum polynomial of ω_p over \mathbb{Q} is the cyclotomic polynomial $\Phi_p(t)$ given by $\Phi_p(t) = 1 + t + t^2 + \cdots + t^{p-1}$. Hence show that $[\mathbb{Q}(\omega_p): \mathbb{Q}] = p - 1$ if p is prime.

(c) Let p be prime and let $\alpha_k = \omega_p^k = \exp(2\pi i(1 + kp)/p^2)$ for all integers k. Note that $\alpha_0 = \omega_p$ and $\alpha_k = \alpha_1$ if and only if $k \equiv 1 \mod p$. Show that if θ is an automorphism of $\mathbb{Q}(\omega_p)$ which fixes $\mathbb{Q}(\omega_p)$ then there exists some integer m such that $\theta(\alpha_k) = \alpha_{k+m}$ for all integers k. Hence show that $\alpha_0, \alpha_1, \ldots, \alpha_{p-1}$ all belong to the orbit of ω_p under the action of the Galois group $\Gamma(\mathbb{Q}(\omega_p): \mathbb{Q}(\omega_p))$. Use this result to show that $[\mathbb{Q}(\omega_p^r): \mathbb{Q}(\omega_p)] = p$ and $[\mathbb{Q}(\omega_p^r): \mathbb{Q}] = p(p-1)$.

23. Show that the field $\mathbb{Q}(\xi, \omega)$ is a splitting field for the polynomial $t^5 - 2$ over \mathbb{Q}, where $\omega = \omega_5 = \exp(2\pi i/5)$ and $\xi = \sqrt[5]{2}$. Show that $[\mathbb{Q}(\xi, \omega): \mathbb{Q}] = 20$ and the Galois $\Gamma(\mathbb{Q}(\xi, \omega): \mathbb{Q})$ consists of the automorphisms $\theta_{r,s}$ for $r = 1, 2, 3, 4$ and $s = 0, 1, 2, 3, 4$, where $\theta_{r,s}(\omega) = \omega^r$ and $\theta_{r,s}(\xi) = \omega^s \xi$.

24. Let f be a monic polynomial of degree n with coefficients in a field K. Then

$$f(t) = (t - \alpha_1)(t - \alpha_2) \cdots (t - \alpha_n),$$

where $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the roots of f in some splitting field L for f over K. The discriminant of the polynomial f is the quantity δ^2, where
\(\delta \) is the product \(\prod_{1 \leq i < j \leq n} (\alpha_j - \alpha_i) \) of the quantities \(\alpha_j - \alpha_i \) taken over all pairs of integers \(i \) and \(j \) satisfying \(1 \leq i < j \leq n \).

Show that the quantity \(\delta \) changes sign whenever \(\alpha_i \) is interchanged with \(\alpha_{i+1} \) for some \(i \) between 1 and \(n-1 \). Hence show that \(\theta(\delta) = \delta \) for all automorphisms \(\theta \) in the Galois group \(\Gamma(L:K) \) that induce even permutations of the roots of \(f \), and \(\theta(\delta) = -\delta \) for all automorphisms \(\theta \) in \(\Gamma(L:K) \) that induce odd permutations of the roots. Then apply the Galois correspondence to show that the discriminant \(\delta^2 \) of the polynomial \(f \) belongs to the field \(K \) containing the coefficients of \(f \), and the field \(K(\delta) \) is the fixed field of the subgroup of \(\Gamma(L:K) \) consisting of those automorphisms in \(\Gamma(L:K) \) that induce even permutations of the roots of \(f \). Hence show that \(\delta \in K \) if and only if all automorphisms in the Galois group \(\Gamma(L:K) \) induce even permutations of the roots of \(f \).

25. (a) Show that the discriminant of the quadratic polynomial \(t^2 + bt + c \) is \(b^2 - 4c \).

(b) Show that the discriminant of the cubic polynomial \(t^3 - pt - q \) is \(4p^2 - 27q^2 \).

26. Let \(f(t) = t^3 - pt - q \) be a cubic polynomial with complex coefficients \(p \) and \(q \), and let the complex numbers \(\alpha, \beta \) and \(\gamma \) be the roots of \(f \).

(a) Give formulae for the coefficients \(p \) and \(q \) of \(f \) in terms of the roots \(\alpha, \beta \) and \(\gamma \) of \(f \), and verify that \(\alpha + \beta + \gamma = 0 \) and
\[
\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma = 3q
\]

(b) Let \(\lambda = \alpha + \omega\beta + \omega^2\gamma \) and \(\mu = \alpha + \omega^2\beta + \omega\gamma \), where \(\omega \) is the complex cube root of unity given by \(\omega = \frac{1}{2}(-1 + \sqrt{3}i) \). Verify that \(1 + \omega + \omega^2 = 0 \), and use this result to show that
\[
\alpha = \frac{1}{3}(\lambda + \mu), \quad \beta = \frac{1}{3}(\omega^2\lambda + \omega\mu), \quad \gamma = \frac{1}{3}(\omega\lambda + \omega^2\mu).
\]

(c) Let \(K \) be the subfield \(\mathbb{Q}(p,q) \) of \(\mathbb{C} \) generated by the coefficients of the polynomial \(f \), and let \(M \) be a splitting field for the polynomial \(f \) over \(K(\omega) \). Show that the extension \(M:K \) is normal, and is thus a Galois extension. Show that any automorphism in the Galois group \(\Gamma(M:K) \) permutes the roots \(\alpha, \beta \) and \(\gamma \) of \(f \) and either fixes \(\omega \) or else sends \(\omega \) to \(\omega^2 \).
(d) Let \(\theta \in \Gamma(M:K) \) be a \(K \)-automorphism of \(M \). Suppose that

\[
\theta(\alpha) = \beta, \quad \theta(\beta) = \gamma, \quad \theta(\gamma) = \alpha.
\]

Show that if \(\theta(\omega) = \omega \) then \(\theta(\lambda) = \omega^2 \lambda \) and \(\theta(\mu) = \omega \mu \). Show also that if \(\theta(\omega) = \omega^2 \) then \(\theta(\lambda) = \omega \mu \) and \(\theta(\mu) = \omega^2 \lambda \). Hence show that \(\lambda \mu \) and \(\lambda^3 + \mu^3 \) are fixed by any automorphism in \(\Gamma(M:K) \) that cyclically permutes \(\alpha, \beta, \gamma \). Show also that the quantities \(\lambda \mu \) and \(\lambda^3 + \mu^3 \) are also fixed by any automorphism in \(\Gamma(M:K) \) that interchanges two of the roots of \(f \) whilst leaving the third root fixed. Hence prove that \(\lambda \mu \) and \(\lambda^3 + \mu^3 \) belong to the field \(K \) generated by the coefficients of \(f \) and can therefore be expressed as rational functions of \(p \) and \(q \).

(e) Show by direct calculation that \(\lambda \mu = 3p \) and \(\lambda^3 + \mu^3 = 27q \). Hence show that \(\lambda^3 \) and \(\mu^3 \) are roots of the quadratic polynomial \(t^2 - 27qt + 27p^3 \). Use this result to verify that the roots of the cubic polynomial \(t^3 - pt - q \) are of the form

\[
\sqrt[3]{\frac{q}{2} + \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}} + \sqrt[3]{\frac{q}{2} - \sqrt{\frac{q^2}{4} - \frac{p^3}{27}}}
\]

where the two cube roots must be chosen so as to ensure that their product is equal to \(\frac{1}{3}p \).